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Resonance in a model of a mammalian neuron

J. L. HINDMARSH! anp R. M. ROSE?

School of Mathematics' and Department of Physiology®, University of Wales College of Cardiff, Cathays Park,

Cardiff CF1 1SS, U.K.

SUMMARY

In this paper we show that for a small range of voltages the model described in the previous paper
(Hindmarsh & Rose Phil. Trans. R. Soc. Lond. B 346, 129—150 (1994a)) will generate damped oscillations
in response to a negative current pulse. As a consequence the cell has the property that it can be driven
into bursting by periodic sinusoidal inputs close to the resonant frequency. The main objective of this
paper is to analyse this resonant behaviour using the model of the model introduced in the previous
paper. We derive analytical expressions which closely approximate the nonlinear resonance observed in
the physiological model driven by a periodic sinusoidal input. This leads to the conclusion that
resonance could play a role in synaptic transmission at relay nuclei in the mammalian brain.

1. INTRODUCTION

In the previous paper (Hindmarsh & Rose 1994a) we
described a model of a mammalian neuron which
showed rebound bursting following a hyperpolarizing
current step. In this paper we examine the response
of the model to periodic external currents of small
amplitude.

From the bifurcation diagram (figure 1) we see that
for a limited range of constant external currents the
system has a stable equilibrium point (EP), an unstable
limit cycle, and a stable limit cycle. The stable EP has
associated with it a pair of complex conjugate
eigenvalues, and typically the state paths approach
the EP in a spiral fashion. By analogy with the damped
harmonic oscillator we expect that at such an Ep the
cell could resonate to a periodic forcing function.
Close to the resonant frequency a periodic input
of sufficient amplitude could drive the cell into
continuous bursting.

In our model, rebound oscillations and resonance
result from the addition of a transient inward Ca?*
current, I, and a Ca?t-activated K* current, Ixca(t)
to the Hodgkin—Huxley equations. In the inner hair
cells of lower Vertebrates, resonance also occurs
through the interaction of an inward Ca?t current
and a Ca%-activated K* current (Fettiplace 1987).
The linear response characteristics of these cells have
been represented using equivalent electrical circuits
(Ashmore & Attwell 1985; Crawford & Fettiplace
1981). These circuits are a development of earlier
work on the subthreshold oscillatory responses of the
squid axon using the linearized Hodgkin—Huxley
equations (Chandler ez al. 1962; Mauro et al. 1970). In
this paper we take a different approach to see the
consequences of the nonlinear nature of the equations.
We examine both the response of the system to signals
of varying frequency but fixed amplitude, and, for
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different frequencies, the amplitude required to drive
the cells from equilibrium to bursting.

The possibility that mammalian neurons showing
rebound oscillations might respond preferentially to
certain input frequencies has been emphasized in a
recent review of the intrinsic properties of these cells
(Llinas 1988). The aim of this paper is to make these
ideas more precise. We will show how resonance can
be measured experimentally in cells showing rebound
bursting. The predicted tuning curve has a sharp
asymmetry which we will describe analytically using
the model of the model introduced in the previous
paper (Hindmarsh & Rose 1994a).

Although our results apply to sinusoidal inputs (i.e.
this is an experimental prediction), it is likely that
cells of this type will also resonate to synaptic current
inputs. The possibility that small synaptic currents
could drive the cell into a distinct bursting state will

be commented upon further in the following paper
(Hindmarsh & Rose 19945).

2. RESONANCE

In the previous paper (Hindmarsh & Rose 19944) we
plotted a bifurcation diagrams for the system:

V= C—l{—gL(U —) — gK"go(v)(” — vg) )

—grmr, (0)hr(v —vc,)

_ ¢ (v — vg)
8K Ca(T) KCa(T) Iy v — VK

. —

()

+ L+ 1+ 1(8)},
by = 7y (b1, (v) — k1),
¢ = —kgrmy_ (0)hr(v — vca) — keac- )
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These diagrams were classified as Types A-D.
Although it would be desirable to investigate
resonance for all four types, we will restrict the
analytical discussion to Type D because we have
already introduced a simplified model for this case
(Hindmarsh & Rose 19944) and because the threshold
tuning curve, to be discussed below, shows an
interesting asymmetry in this case. In the last section
we will comment on numerical calculations for cells
with bifurcation diagrams of Types A and B.

Using the parameter values given in Appendix 1 of
Hindmarsh & Rose (19944), part of a Type D
bifurcation diagram is reproduced in figure la. For
values of the bifurcation parameter, the external
current, between I = Iy and I = I, the system has a
stable EP (as well as an unstable and stable limit
cycle). These EPs corresponding to points on the
dotted line of the diagram, have membrane potentials
in a narrow range. At these EPs, the eigenvalues of
the linear approximation matrix are of the form
—a £18, —y where a, 8, > 0. The complex conjugate
pair of eigenvalues with negative real part correspond
to damped oscillatory behaviour of the cell on return
to equilibrium. In figure 15 the system is in the initial

state:
o —63.3
vo=| hyo | = | 0.033 |,
o 0.059
with Iy = —1.35pAcm™2 as in the previous paper

(Hindmarsh & Rose 19944) and [7I+1(¢) =
OpAcm™2. We now apply a strong negative current
pulse I(¢t) = —0.6pAcm™2 of short duration, 7=
0.5ms. The effect of this pulse is to decrease the
membrane potential by approximately /7 mV, that is
0.3 mV, and leave the other variables unchanged. The
state of the system is now:

-0.3
vy =9+ 0
0

Following the termination of the pulse the state of the
system returns to the resting point. The time course of
the membrane potential during this return to the EP
may be computed using the linear approximation at
vy and taking advantage of the canonical form
(Hindmarsh & Rose 19944). The subsequent state is
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Figure 1. (a) ({,v — ) bifurcation diagram for the standard physiological model, whose parameter values are
given in Appendix 1 of Hindmarsh & Rose (1994a). For explanation see text. (b—d) Responses of the linearized
approximation to equations (1), calculated using equations (2) (with the same parameter values as in (a)), to
current pulses of amplitude —0.6 pA~2 applied for 7=0.5ms at EPs with resting potential v, and external
current I given by: (b) vy = —63.256mV, I =0pAcm 2, (¢) wo=—62.775mV, I =0.35pAcm % and (d)
vg = —63.28mV, I =0.7 p,Acm"Z. The differences between these analytical solutions and those obtained by

numerical integration of equations (1) are negligible.
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given by
v(t) = T x(t) + vy, (2)
where
e Xcosft e HsinBt O
x(t) =] —e Hsinft e cosBt 0 |xy,
0 0 e

and
X0 = T(vl - vo).

The timecourse of the membrane potential, v(¢),
computed using equation (2), with parameter values
given in Appendix 2 of Hindmarsh & Rose (1994q), is
shown in figure 15. The timecourse computed using
equations (1) was almost identical (not shown). This
similarity of the two time courses confirms the validity
of the linear approximation.

Responses to a current pulse of the same amplitude
and duration for more positive values of the external
current, /, are shown in figures l¢ and 1d. These
responses were also computed using equation (2) with
values for T, T, a, B and y appropriate for the
new EP. Note that as the EP is moved further from
the bifurcation point, the responses become more
damped. This is mainly caused by an increase in the
value of damping a. Note that similar strongly
damped responses may also be obtained in the case
of a system with a supercritical bifurcation diagram
such as that shown in figure 2a of the previous paper
(Hindmarsh & Rose 19944) provided that the resting
point is chosen sufficiently close to the bifurcation
point.

Similar responses to those shown in figure 1 may be
obtained if we replace the current pulse by a synaptic
current of the form I, (t) = gyn(t)(v — vy,) and
apply a pulsatile change in gy, (#). These responses
can be obtained with v, as closely as 4-5mV
negative to vy, as might be appropriate for a
GABA, inhibitory synapse. However small ampli-
tude damped oscillatory postsynaptic potentials with a
similar timecourse to the response shown in figure 15,
have not to our knowledge been reported in the
literature.

The damped oscillations of figure 1 suggest that
if a cell were at rest at one of these EPs, then its
response to a periodic input would increase as the
input frequency approached the oscillation frequency.
That is, the cell would exhibit resonant behaviour,
which should be more pronounced for small values of
the damping a. In this paper we will use sinusoidal
input currents. Similar results can be obtained using
current pulses (not shown). We also apply the analysis
at the EP shown in figure 15 where the damped
oscillation was most pronounced. In §9 we will show
that there is still significant resonance at the EPs shown
in figures l¢ and 1d, where the current pulse responses
are more strongly damped.

Phil. Trans. R. Soc. Lond. B (1994)

3. THE THRESHOLD CURVE (TC)

We now consider the model described by equations
(1) with I(¢) = I cos wt. These are:

b=C"{—gL(v —v) — grnie(v)(v — ) )

—&rMmrt,, (U)’ZT(” - Uca)

c
— gKCa(T) (W) (v —vg) 3)

+ 1o+ 1+ 1coswt},
hy = T/TTI(’ZTOO(U) — hT),
¢ = —kgrmr_ (hr(v — vea) — kcac- )
We examine responses at the EP yyg = —63.3 mV with

Iy=-135pAcm™2 and I = 0.

The curve shown in figure 24 was obtained by
finding, for each value of frequency, f = 1000w/
(2n) Hz, the (threshold) amplitude 7, of a periodic
input coswt, which is just sufficient to drive the
system from the stable EP to the stable limit cycle.
We call these curves threshold curves (tcs). Note
that when in the stable limit cycle the cell generates
low threshold spikes (LTs), which in the full six-
dimensional system (see Hindmarsh & Rose 1994a,
equations (4)) will generate periodic bursts of fast
action potentials. Examples of reaching the stable
limit cycle for an input amplitude above the Tc,
and of failure to reach the stable limit cycle for an
input amplitude below the Tc are shown in figures
2b—d.

In this and the following section we refer to the
voltage coordinate of the EP as vy, and the maximum
voltage of the unstable limit cycle as v.. Also fg is the
resonant frequency of the linearized equations at the
P and the fr, is the frequency at which the
(nonlinear) TC has its minimum value. Two interest-
ing features of the TG are its sharp corner at fty,, and
its asymmetry. For frequencies just below fr, the
curve is parabolic. For frequencies just above fr, the
curve is steeper and almost linear, levelling off at
(fTn + 3) Hz in the example shown in figure 2a. This
asymmetry in the responses is shown in figure 25—d.
Each of these figures shows the response of the system
to a periodic input of amplitude 7 = 0.1 pAcm™2. In
figure 2b the frequency is 35 Hz which as shown in
figure 2a is just to the left of the Tc. In figure 2¢ the
frequency is 35.6 Hz just to the right of the Tc. In
figure 24 the frequency is 40 Hz just to the right of the
TC on the steep right hand side. Here the maximum
membrane potential oscillates below v, and does not
succeed in reaching the stable limit cycle. These
asymmetric features will be explained below.

4. THE RESPONSE CURVE (RC)

In the previous section the response was described by
giving the threshold amplitude of the input signal
required to drive the system into its stable limit cycle
for varying input frequency. The resulting curve was
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Figure 2. (a) Threshold curve (tc) for the standard model obtained by numerical integration of equations (3) at
vg = —63.3mV with Iy =—1.35pAcm™2 and I=0. This graph shows the amplitude I of a periodic input
I coswt which is just sufficient to drive the system into a stable limit cycle with f = 1000w/ (2n) Hz. (b—d) are
examples of voltage responses obtained by numerical integration of equations (3) for I =0.1pAcm™2 (see
horizontal dashed line in (a)) at frequencies: (b) f = 35Hz, (¢) f = 35.6 Hz and (d) f = 40 Hz. The stimulating
current is shown below each trace, and the corresponding points with coordinates (f,7) are indicated by the
open circles labelled (b), (¢) and (d) in (a). (¢) Timecourse of voltage response for equations (3) with
f =41.85Hz and I = 0.016 pA cm™2. The growth in voltage amplitude shown by the solid curve was calculated
from the averaged model of the model equations for small r as given by equation (7) in §6. This choice of ( f,1)
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values corresponds to the open circle labelled (¢) in (a).

called the threshold curve (TC). An alternative way of
describing the response is to give the output voltage
amplitude for an input signal of fixed amplitude for
varying frequencies. We refer to the latter as a
response curve (RC).

Figure 3 shows the relationship between the Tc
shown in figure 2¢ (and reproduced in figure 3a),
and the corresponding Rcs (figure 3b). The rc for
the linear approximation to equations (3) at the EP
can be calculated analytically and is shown for
I=0.016pAcm™2 by the lower dotted curve in
figure 35. The shape of this linear rRc is independent
of the value of 1. Thus doubling the value of I to
0.032 pA cm~2 doubles the amplitude of the linear rC
(upper dotted curve in figure 34).

The nonlinear rcs (solid curves of Figure 35) were
obtained by integrating equations (3) numerically for
fixed values of 7, and measuring the amplitude of the
voltage response over a range of frequencies. In this
case the shape of the curve depends on the value of I.

Phil. Trans. R. Soc. Lond. B (1994)

Thus for 7=0.016pAcm™2 the nonlinear RC is
hardly distinguishable from that of the linear rc
(shown as a dotted curve in the lower part of figure
3b). When the value of I is doubled to 0.032 uA cm—2
the nonlinear RC has a sharper peak than the
corresponding linear RC (compare the almost coin-
cident solid and dotted curves in the lower part
of figure 3b). For amplitudes of 7 beyond
0.0345 pA cm™ the RCs steepen and terminate when
the threshold amplitude is exceeded and the system
enters its stable limit cycle.

Response curves have been described previously in
cells such as the squid axon (Mauro et al. 1970;
Fitzhugh 1983), frog node (Clapham & de Felice
1982), heart cell membrane (De Haan & De Felice
1978), and inner hair cells (Ashmore & Attwell 1985;
Crawford & Fettiplace 1981). In our system
(equations (3)) the presence of a firing threshold
means that the response can be described in terms of
either a TC or a set of Rcs. In the next section we
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Figure 3. Comparison of (@) threshold curve (TC) and (b) response curves obtained numerically for the standard
physiological model at vy = —63.3 mV, with (¢) Tc and (d) RCs obtained analytically for the averaged model of the
model at the same EP. The TcC in (a) is a reproduction of figure 2a. The Tc in (¢) is a reproduction of figure 4a. In ()
and (d) the two lower dotted RCs curves were obtained analytically for the linear approximation to equations (3)
and (5) respectively for two values of 7 = 0.016 pA em™ and T =0.032 pA cm™2. In (b) the five solid curves were
obtained bgf numerical integration of equations (3) (physiological model) for 7 = 0.032, 0.064, 0.1, 0.15 and
0.2pAcm™ . In (d) the five solid curves were obtained analytically (see §7) for the model of the model with the
same values of I. Also shown in (d) are the threshold curves determined by the Routh conditions R2 and R3 (see § 7)
which divide each Rc into a section which is subthreshold (solid curve) and a section above threshold (shown
dotted). Horizontal dashed lines at I = 0.2 pA cm™2% in (a) and (c) intersect each Tc at two points. These points are

projected downwards in each case to meet the corresponding threshold points on the res for 7 = 0.2 pA em ™2,

describe how the simpler model of the model of . B 9 g _ ITy,
Hindmarsh & Rose (1994a4) may be used to obtain %= ~&¥ L4a(x +7) —b{z+—=

analytically the TCc and set of RGs shown in figures + B+ Tyl cos wt,

In polar coordinates these equations become:

2 3¢,d.
. IT,
> > y=—ay(1+a(a‘c2+g2)—b(ﬂ——”))
olm 5. THE RESPONSE TO PERIODIC CURRENT ) L4
7 ™ INeuTs — B+ Tyl cos wt,
E @) Equations (11) of Hindmarsh & Rose (1994a) are: t=—y(E— @ +7) +dF +7)%) + Tal cos wt.
=

i =—ax+ By — ala(s® + 4" — b2)x + T (I + 1(1)),

. _ 2 1Ty
) s 9 r=—ar|l4+a" —blz4+—=
§=—Bx—ay—a(a(x” +y" = bz)y + T (I + 1(t)), Y
+ I cos wt( Tyy cos 0 + Ty sinb),
2= —yzty(el + 9" — (& + ")) + Tl +1(0)).
n I cos wt(— Ty sin @ + Ty cos 0)

We will consider the case where I(t) = I coswt. 0=-p 7 '
Changing coordinates using equations (13) of | - 9 4 -
Hindmarsh & Rose (19944) we get: z2=—y(z—a" +d7") + Tyl coswt.

PHILOSOPHICAL
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These equations may be written as:

R
= —ar(l + ar® —b(z—l-g))
Y

+ g cos wt cos (¢ — 0),
g cos wisin (¢ — ) W
é:_B+gcosw S1rn ’

= —n(z— o+ dr*) + gcos wi, J
where
g=1ITy, g=IKTH+THY,
cos¢ =

. Ty
Sll’l¢ = —‘2—?—1 .
(T + T5)

At this stage is it necessary to modify the model of
the model (equations (4)) in order to explain the
asymmetry of the threshold curve. This asymmetry
arises because the frequency of oscillation of the
system at its unstable limit cycle is less than the
frequency of oscillation near the Ep. The frequency of
oscillation of the system decreases with amplitude.
This is also shown by the fact that the frequency of
maximum response decreases as the driving amplitude
(for subthreshold amplitudes) increases, as shown in
figure 35.

The modification we chose was to rewrite the
equation of equations (4) as:

2+gcoswtsin(¢— 0)'

0=—B+er .

The term er? was obtained by starting the system in a

state near the unstable limit.cycle and integrating the
physiological model equations (1). The timecourse of
the membrane potential was plotted to measure the
frequency of oscillation, and the timecourse of the
radial coordinate of the polar form of the canonical
coordinate system was plotted to measure the
corresponding amplitude. In this way we found a
suitable value of ¢ to be 4000.

6. THE AVERAGED FORM OF THE MODEL
OF THE MODEL EQUATIONS

Putting = wt — (¢ — 0) and w =B+ 8§, equations
(4), modified as above, many be written as:
P = —ar(l + @ — bz + g/7))

g(cos ¢ + cos (2wt — )

+ )
2
(— sin ¢ + sin (2wt — )
2r ’

z/}=8+erz+g

2= —y(z—a® +dr*) + gcos wt.

The averaged version of these equations is obtained
by ignoring cos (2wt — 1)), sin(2wt— ) and cos wt

Phil. Trans. R. Soc. Lond. B (1994)

terms, and is,
g(cos )
2 )

$=58+ er” — g:————(Si; ¥) ) 5)

7= —ar(l +a — b(z+g/y)) +

p=—y(z—o® +dr").

Our first use of these equations is to describe the
growth in amplitude of the response of the system,
started in equilibrium with g=0, to a periodic
input of subthreshold amplitude. For small » and at
resonance, 6 =0, and equations (5) become:

i=—ﬂr+g®?¢x

;_ _&Ging) (6)
‘l‘ - 9r ’

z=—yz.

Using the initial conditions that (0) =0, z(0) =0
and 7(0) = € (small) we obtain:

‘/‘(t) =0, Z(t) =0,

and so

N |Osl

F=—ar+=,

from which
_8 _ 8 e
r(t) = 2a+ (e Qa)e . (7)

So, using the transformations (8), (9) and (14) of
Hindmarsh & Rose (1994a), the membrane potential
is given by:

o(t) = s + Tyar(t) cos (0())

+ Tar(¢) sin (0(¢)) + Taz(2).
Because
0(t) = (1) —wt + = ¢ — wt,
and T73 = 0, the membrane potential is:
v(t) = v + Tur(¢) cos (¢ — wt),

an oscillation whose growth in amplitude is given by
Tllf(t).

For small values of g, use of equations (7) gives an
accurate fit to the transient time course of the
membrane potential as shown in figure 2e.

By including 8 in the ¢ equation of equations (6),
and putting # = ¢ = z = 0 we also obtain the steady
state response for different values of &:

. _3\/ 1
* oV \a2+82)°

Using v, = T737,, this gives the dotted rcs in the lower
part of figure 34 for two different values of g. These
curves can be compared to the dotted curves of the
lower part of figure 36 which were obtained from the
linear approximation of the physiological model
(equations (3)) using the same values of I (or 3).
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7. DERIVATION OF THE THRESHOLD
CURVE

We will now use the averaged equations (5) to derive
the threshold curve, and thereby see analytically the
reason for the asymmetry and sharp corner at fyy,.

Behaviour near the unstable limit cycle is crucial in
determining whether or not the system goes above
threshold. For the cases we will consider, with small
values of I, the unstable limit cycle is much smaller
than the stable limit cycle (see figure la). By removing
the term dr*, responsible for the appearance of the
stable limit cycle, we do not significantly affect the
behaviour of the system near the unstable limit cycle.
Without the term dr* the response of the system
becomes unbounded once it is raised above threshold.
We therefore make the following assumption. If, for
given values of § and g, the system (5) does not have a
stable EP, then the amplitude is above threshold.

The coordinates (7g,3,29) of the EP of the
equations (5) with d = 0 must satisfy:

—arg(1+arg — b(zo + ¢/7)) + &(coshy) /2 = 0,
8-+ erg — g(singho)/(2r0) =0, » (8)
~y(z0 — erg) =0,
so by elimination of and 29, 7o must satisfy:
o*?((1 = bg/y) + (a = b)r™)* + (3 + o)1 = /4.
(9)

The linear approximation at an EP (rg, ¥, zg) Is:

a(—(3a = be)rg — (1 — bg/y)) —10(8 + erg)

(2er2 + 8+ er2) /19
2¢cyrg 0

where equations (8) have been used to express the
partial derivatives in terms of 7.

The eigenvalues of this matrix are the roots of the
characteristic equation:

X+ ()X + ay ()X + as(r§) = 0,
where
a1 (15) = 2a((1 = bg/y) + (2a— be)rg) +7,
a5(r3) = 2ay((1 — bg/y) + 2(a — be)rg)
+ (8+ er) (8 + Berg) + a®((1 — bg/y)
+ (e — be))((1 = bg/y) + (3a — be)rp),
a3(r§) = a®y((1 — bg/y) + (a— be)r) (1 — bg/y)
+3(a— bo)rd) + (8 + erd) (5 + 3erd).

The Routh conditions for stability of the EP at
(o, 0, 29) are that:

(1) > 0, (R1)
03(7(%) > 0’ (RQ)
a1 (18)as (15) — a3(rG) > 0. (R3)

Phil. Trans. R. Soc. Lond. B (1994)

For our parameter values 2¢ — b¢ > 0, and so the
first of these conditions is always satisfied when
0<g<y/b

For each pair (8,7) we found all positive roots, g, of
equation (9). If at least one of them gave a stable Ep
according to the Routh conditions, then according
to our assumption above, that pair was below
threshold. By converting the parameters 6 and g into
frequency f = 1000(B + 8)/(2n) and current ampli-
tude I =g/(TE + TZ)Y? we obtain the Tc for the
averaged model of the model. This curve is shown in
figure 4a (and reproduced in figure 3¢) and exhibits
the sharp corner and asymmetry that we noted in the
physiological model (compare figures 3a and 3¢).

To understand more clearly the shape of this
threshold curve we will find the points (§,2) in
parameter space at which the individual Routh
conditions fail. That is, the parameter values for
which the system has an EpP at (g, g, z9) for which
either

as(r§) = 0, (10)
al(fg)ﬂz(fg) - ﬂ3(’<2>) =0. (11)

This is done by taking advantage of the fact that the
Routh conditions are quadratic in 6 and do not
depend on g. For each ry € [0,0.05] we find the values
of § for which equation (10) holds. Then, for that 7,
and these values of §, we find, using equation (9), the
value of g which allows (rg, gy, z9) to be an Ep. These

abrg

—a(a—bo)rg+(1=0bg/y)) 0 |,

-y

parameter values for which the system has an Ep
where equations (10) are satisfied are shown as the
curve Routh 2 in figure 45.

For the third Routh condition, R3, the parameter
values for which the system has an EP, where
equations (11) are satisfied, can be found in the
same way. These values are shown as the curve Routh
3 in figure 45.

The second Routh condition, R2, is simply the
condition that the determinant of the linear approxi-
mation be greater than zero. Thus points on the curve
Routh 2 are parameter values for which the system
has an EP for which the determinant is zero. This Ep
has a zero eigenvalue and the system has a saddle-
node bifurcation at such a point.

The number of EPs and their stability can change
only at points in parameter space that lie on the
curves Routh 2 or Routh 3 in figure 4b. Therefore by
examining the system at one point in each region
bounded by the curves in figure 46 we can determine
the number of stable and unstable EPs in each such
region. These numbers are shown in form (2) where 7
is the number of stable EPs and m is the number of
unstable Eps. We note that the sharp corner results
from the intersection of Routh 2 and Routh 3 and that
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Figure 4. (a) The threshold curve obtained analytically for the model of the model (see §7). () The curves
Routh 2 and Routh 3 dividing the ( f,I) parameter space into regions, in which the number, 7, of stable and

number, m, of unstable EPs is shown as (£). A horizontal line is drawn at = 0.05pAcm "

2 (¢) The response

curve for I = 0.05pA cm™2. Stable points shown by a continuous curve and unstable points shown by a dotted
curve. Stability may change when the response curve crosses curves calculated from Routh 2 and Routh 3.

there is fine detail associated with the close proximity
of these curves on the left-hand side. This detail was
ignored in  drawing  figure  4a.  Dufling
type jump phenomena associated with the detail near
the sharp corner on the right-hand side will be
commented on below.

In figure 4¢ we show an Rc for a particular value of
I(3) for the averaged model of the model. This was
calculated by finding all positive roots of equation (9)
for that value of g and plotting:

Umax = Y0 + Tl_ll(x(l) + 70) + Tlgl(z(l) + zO)a

(see equations (22) of Hindmarsh & Rose (1994a))
against frequency. In this case I =0 so x(/)=
= z(I) and zy = ¢72 as we have ignored the term dr*.
The Routh conditions R2 and R3 were used to
determine the stability of points on the response curve.
The relevant condition is indicated in figure 4¢. These
threshold curves divide the response curve into a
section which is above threshold (shown dotted) and a
section which is subthreshold (solid curve). Note that
the frequencies at which the stability changes can be
obtained from the top diagram by looking for the
points where the horizontal line 7 = 0.05pA cm™2
(g = 0.00005) intersects the Routh condition curves.

Phil. Trans. R. Soc. Lond. B (1994)

Finally we show in figure 34 a set of RCs for varying
g (or I) for comparison with the physiological model
using the same values of 1. These RCs resemble those of
the Duffing equation shown in most standard
textbooks on nonlinear dynamics, with the interesting
variation that there are closed curves within the
diagram. Together with the additional instabilities
introduced by our notion of threshold, there is a
greater variety of jump’ phenomena than occurs with
the Dufling equation. These jumps in the amplitude of
the response occur as the frequency of the (constant
amplitude) input is slowly changed. They may be
regarded as a prediction of the model of the model
about the behaviour of the physiological model. We
have observed such jumps in the physiological model
but the choice of the value of the amplitude of the
input is so fine that it is unlikely that such jumps could
be observed experimentally.

8. LIMITATIONS OF THE MODEL OF THE
MODEL

In Figure 5 a logarithmic frequency scale is used to
compare the TCs of the physiological model and the
model of the model at low frequencies. The dotted
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Figure 5. Threshold curves in low frequency range (logarithmic frequency scale) for (a) standard physiological
model at vy = —63.256 mV, I =0, Iy = —1.35pA cm ™2 and (b) model of model at same EP. Dotted curves in (a)
and (b) are threshold points obtained by numerical integration of equations (3) and equations (4) respectively.
Solid curves in (a) and (b) were obtained analytically as described in the text. (¢) Voltage response of physio-
logical model at f = 3Hz, I =0.67 1L1Acm_2 (point labelled (¢) in (a)). (d) Voltage response obtained using
model of model at f = 3Hz, I = 0.5pA cm™2 (point labelled () in (b)).

curves in figure 5a,b were obtained by numerical
integration of equations (3) (physiological model) and
equations (4) (the model of the model) respectively.
The solid curve in each case is the analytical TC
obtained from the averaged model of the model
equations as described above.

Although the numerical results shown in figure
5a,b are similar at low frequencies, it is clear that
averaging does not apply below about 20Hz. The
reason for this is made clear by the examples shown in
figure 5¢,d for a representative point (open circle in
figure 5a,b) in each model. Here the driving frequency
is 3 Hz which is well below the natural frequency of
the system.

9. THRESHOLD CURVES FOR DIFFERENT
VALUES OF I

So far we have described the Tc for the physiological
model obtained numerically (figure 3a4) and compared
this with the Tc obtained analytically for the averaged
equations of the model of the model (figure 3¢). In
both cases g = I/ T3; = 0, and the EP was very close to

Phil. Trans. R. Soc. Lond. B (1994)

the bifurcation point (see figure la). In figure 6a we
extend the range of frequencies to 100Hz at the
same EP (I = 0). As shown by the dotted curve, which
was obtained by numerical integration of equations
(3), the physiological model shows a prominent
subharmonic at twice the resonant frequency (i.c.
78 Hz). This subharmonic is absent in the model of
the model (see figure 56) and in the analytical TC of
the averaged model of the model equations (solid
curve in figure 6a). We have not yet considered how
to modify the model of the model to account for this
subharmonic component.

An important question is to determine how these
TCs change as the EP is moved further from bifurcation
point. As the value of I is increased (figure 6b,¢) the TC
of the physiological model is displaced upwards and
the subharmonic component becomes less prominent.
The analytical Tc (solid curve) is also displaced
upwards as [ is increased and appears to be related
to the primary component of the physiological Tc
(with a minimum at fry,). Note that this also means
that if a Rc was plotted for a fixed value of I, this rC
would become reduced in amplitude as I was
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Figure 6. Threshold curves obtained numerically for the physiological model (dotted curves) and analytically
for the averaged model of the model (solid curves) for (a) I=0uAcm_2, () I=0.35uAcm_2 and

(¢) I =0.7pAcm™2.

increased. This is the opposite of the change that
occurs in the inner hair cells of lower vertebrates
(Fettiplace 1987) where the RCs decrease in amplitude
with steady hyperpolarization.

The Hodgkin—Huxley model also shows sub-
threshold oscillations and resonance which becomes
more pronounced as the EP is brought closer to the
boundary of stable and unstable region. (Hodgkin &
Huxley 1952; Markevich & Sel’kov 1989), requiring
fine adjustment of the external current to achieve
resonance. This requirement for fine adjustment of
the external current has previously been thought to
suggest that resonance would be unlikely to be of
physiological importance unless additional mecha-
nisms could be found to improve the sharpness of the
response curves (Markevich & Sel’kov 1989).

In mammalian neurons resonance may be of more
significance than in the squid axon. Firstly, note that
the three TCs of figure 6 were obtained at the three Eps
for which we obtained the responses to pulses shown
in figure 2. This means that although the differences
in membrane potential are only of the order of
1.5mV, Eps in this range span a considerable part of
the bifurcation diagram (see figure la). In addition,
the Tcs were sharper than may have been expected
given the degree of damping of the responses to
these pulses. (Note that whereas the Tcs were
obtained from the model of the model which was
constructed around the linear approximation at the ep
with fy = —1.35 uA cm ™2 the responses to pulses were
obtained using the linear approximations at the three
different Eps.) Secondly the asymmetry of the Tc, in
particular the steepness on the high frequency side of
the resonance, means that the response of the cell is

Phil. Trans. R. Soc. Lond. B (1994)

sensitive to small changes in driving frequency for
frequencies just higher than resonance (one sided
sharpness). Thirdly many mammalian neurons have
additional ionic currents which are modulated by
transmitters to slowly adjust the ‘external current’
(McCormick 1989). The additional complexity of the
bifurcation diagram and the presence of these
additional ionic currents suggests that resonance
may be involved in synaptic transmission at certain
relay nuclei of the mammalian brain.

10. EXPERIMENTAL VERIFICATION

In the previous paper (Hindmarsh & Rose 1994a) we
showed that in the presence of tetrodotoxin (TTX)
rebound bursting cells could be classified into four
categories which we referred to as Types A, B, C and
D. In this paper we have analysed resonance for a cell
with a Type D bifurcation diagram. We now report
the results of a numerical investigation of resonance in
cells of Types A and B.

Figure 7a shows a rebound response to a hyper-
polarizing current step for the four dimensional model
discussed in the previous paper (Hindmarsh & Rose
19944, equations (32)). The separation parameter,
Usep, has been chosen to be 2mV to give a Type A
bifurcation diagram (Hindmarsh & Rose 1994aq,
figure 10a). The external current is set to 0 pA cm™2
and all other parameter values are given in Appendix
3 of Hindmarsh & Rose (1994a). As shown in figure
76, in the presence of TTX the response to a
hyperpolarizing current step is also a decaying
oscillation. Recordings such as those shown in figure
7a,b are typical of a LHb neuron (Wilcox et al. 1988).
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Figure 7. Predicted threshold curve for a cell with a Type A bifurcation diagram (e.g. a LHb neuron). (a)
Response of the four-dimensional model, whose equations and parameter values are given in Appendix 3 of
Hindmarsh & Rose (1994a), to a current step, I(¢), of amplitude —3 uAcm_2 and 50ms in duration with
I =0pAcm™? and Usep = 2mV. (b) Same numerical experiment as in (¢) but in addition gy, =
gnap = 0mS cm™2 to show how the cell would respond in the presence of TTX. (¢) Threshold curve (rc) for the
four-dimensional model with the same equations and parameter values as in (a). The graph shows the amplitude
I of a periodic input I(t) = Icoswt which is just sufficient to drive the system into bursting with
f =1000/(2n)Hz. (d—f) Examples of voltage responses obtained by numerical integration of the four-
dimensional model with the same equations and parameter values as in (a) for 7 = 0.32 A cm™? (see horizontal
dashed line in (¢)) at frequencies (d) f = 11Hz, (¢) f =12Hz and (f) f = 17Hz. The stimulating current is
shown below each trace, and the corresponding points with coordinates (f,7) are indicated by the open circles

(@), (¢) and (f) in (c).

We now construct a threshold tuning curve (TC)

threshold oscillation. Here we require that the cell
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for this four-dimensional model. Although we do
this numerically a similar procedure could be
followed experimentally. We find for each value
of the frequency, f = 1000w/ (2n) Hz, the (threshold)
amplitude of a periodic input /(¢) = I cos wt which is
just sufficient to drive the system from a stable EP to
bursting. Note that previously our criterion for
reaching threshold was that the cell went into low

Phil. Trans. R. Soc. Lond. B (1994)

generates bursts of fast action potentials since this is
easier to measure experimentally. The resulting TG is
shown in figure 7¢. Examples of reaching bursting for
an input amplitude on the T¢ and failure to reach
bursting for input amplitudes below the Tc are shown
in figure 7d—f. Note that in contrast to the responses to
a Type D cell (figure 2¢), firing stops when the
periodic input is terminated (figure 7e).
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Comparison of figure 7 with figure 2 shows that the
TCs have similar features. In figure 2 the TC was
parabolic for frequencies just below fr, and more
linear for frequencies just above fr,. This asymmetry
also occurs in figure 7 but is less pronounced. A clear
indication of the asymmetry can be found by
comparing figure 7d, f with figures 2b,d. In figure 74
the frequency is 11 Hz which is just to the left of the TC

Resonance in a model of a mammalian neuron

and the amplitude increases initially and is then
constant. In figure 7f the frequency is 17 Hz which is
just to the right of the TC and the maximum
membrane potential oscillates slowly before settling
down below threshold. This distinction between
the left and right sides of the TC was also noted in
figure 2.

In figure 8z we show a rebound response to a
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Figure 8. Predicted threshold curve for a cell with a Type B bifurcation diagram (e.g. some LHb neurons, some
nRT neurons). (¢) Response of the four-dimensional model, whose equations and parameter values are given in
Appendix 3 of Hindmarsh & Rose (1994a), to a current step, I(t), of amplitude —2 pA cm™2 and 60 ms in dura-
tion with Ig,, =0 uAcm_Z and v, = 1.45mV. (b) Same numerical experiment as in () but in addition
gNa = &nap = 0mScm ™ to show how the cell would respond in the presence of TTX. (¢) Threshold curve (Tc)
for the four-dimensional model with the same equations and parameter values as in (a). The graph shows the
amplitude I of a periodic input I(t) = I cos wt which is just sufficient to drive the system into bursting with
f =1000/(2n) Hz. (d-f) Examples of voltage responses obtained by numerical integration of the four-
dimensional model with the same equations and parameter values as in (a) for I = 0.15pA cm™2 (see horizontal
dashed line in (¢)) at frequencies (d) f = 12Hz, (¢) f = 13Hz and (f) f = 19Hz. The stimulating current is
shown below each trace, and the corresponding points with coordinates ( f,7) are indicated by the open circles

(d), (¢) and (f) in (c).
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hyperpolarizing current step for the same four-
dimensional model but with parameter values
chosen to give our model of an nRT cell (see
Appendix 3 of Hindmarsh & Rose (19944)). The
bifurcation diagram (with TTX) for these parameter
values 1s shown in Figure 104 of Hindmarsh & Rose
(19944) and is of Type B. As we remarked in that
paper the rebound response (without TTX) is a
decaying oscillation with a tonic tail (figure 8a)
whereas the oscillation is sustained in the presence of
TTX (figure 8b).

The Tc for this model is shown in figure 8¢. Here the
frequency range has been extended to 50 Hz to show
the presence of a subharmonic at 2ft,. The Tc was
calculated in the same way as in the previous example
(figure 7¢). Figure 8d—f shows representative examples
of reaching bursting for an input amplitude above the
TC and failure to reach bursting for input amplitudes
below the Tc. Note that in figure 8¢ bursting stops
when the periodic input is terminated.

Thus we find that the predicted Tcs for cells with
bifurcation diagrams of Types A and B are similar to
the TC for the Type D cell which we have described
analytically.

11. CONCLUSIONS

To our knowledge this paper gives the first mathe-
matical analysis of resonance for a model of a
mammalian central neuron. We have predicted the
responses to sinusoidal inputs for a class of
mammalian neurons which show rebound bursting
(Hindmarsh & Rose 1994a), of which lateral
habenula neurons and neurons of the nucleus
reticularis thalami are examples (see last section).
Resonance has been described using a threshold
tuning curve which could be measured experi-
mentally. No experimental measurements of this
type have so far been made on such cells. Note
however that preliminary observations on inferior
olivary cells (Llinas & Yarom 1986; Yarom 1991),
which also show rebound bursting, have demonstrated
the existence of resonant properties in these cells.

The tuning curve is asymmetrical. We are not
aware of any other system for which an analytical
explanation has been given for an asymmetrical
tuning curve.

Although we have concentrated on the experi-
mental measurement of resonance using sinusoidal
inputs, it is likely that cells of this type will also
show resonance under physiological conditions. Some
preliminary numerical calculations for this type of
input are included in the following paper (Hindmarsh
& Rose 19944).

In conclusion we add the following historical note.
The possibility that central neurons may operate in
the frequency domain rather than the time domain
led Longuet-Higgins (1968) to apply holographic
principles to the problem of storage and retrieval of
temporal information. This idea was later considered
to be unrealistic since it would require a bank of
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resonators each with a bandwidth of approximately
1 Hz (Longuet-Higgins 1989). The cells that we have
described do have relatively narrow tuning curves and
occur together in nuclei which could be considered as
forming a filter bank. If experimental evidence for
resonance could be obtained it would invite the
reconsideration of the above ideas.

This work was supported by the Wellcome Trust.
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